5 research outputs found

    Verification of microarchitectural refinements in rule-based systems

    Get PDF
    http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5970511&tag=1Microarchitectural refinements are often required to meet performance, area, or timing constraints when designing complex digital systems. While refinements are often straightforward to implement, it is difficult to formally specify the conditions of correctness for those which change cycle-level timing. As a result, in the later stages of design only those changes are considered that do not affect timing and whose verification can be automated using tools for checking FSM equivalence. This excludes an essential class of microarchitectural changes, such as the insertion of a register in a long combinational path to meet timing. A design methodology based on guarded atomic actions, or rules, offers an opportunity to raise the notion of correctness to a more abstract level. In rule-based systems, many useful refinements can be expressed simply by breaking a single rule into smaller rules which execute the original operation in multiple steps. Since the smaller rule executions can be interleaved with other rules, the verification task is to determine that no new behaviors have been introduced. We formalize this notion of correctness and present a tool based on SMT solvers that can automatically prove that a refinement is correct, or provide concrete information as to why it is not correct. With this tool, a larger class of refinements at all stages of the design process can be verified easily. We demonstrate the use of our tool in proving the correctness of the refinement of a processor pipeline from four stages to five.National Science Foundation (U.S.) (NSF (#CCF-0541164)

    Automatic generation of hardware/software interfaces

    No full text
    Enabling new applications for mobile devices often requires the use of specialized hardware to reduce power consumption. Because of time-to-market pressure, current design methodologies for embedded applications require an early partitioning of the design, allowing the hardware and software to be developed simultaneously, each adhering to a rigid interface contract. This approach is problematic for two reasons: (1) a detailed hardware-software interface is difficult to specify until one is deep into the design process, and (2) it prevents the later migration of functionality across the interface motivated by efficiency concerns or the addition of features. We address this problem using the Bluespec Codesign Language (BCL) which permits the designer to specify the hardware-software partition in the source code, allowing the compiler to synthesize efficient software and hardware along with transactors for communication between the partitions. The movement of functionality across the hardware-software boundary is accomplished by simply specifying a new partitioning, and since the compiler automatically generates the desired interface specifications, it eliminates yet another error- prone design task. In this paper we present BCL, an extension of a commercially available hardware design language (Bluespec Sys- temVerilog), a new software compiling scheme, and preliminary results generated using our compiler for various hardware-software decompositions of an Ogg Vorbis audio decoder, and a ray-tracing application.National Science Foundation (U.S.) ((#CCF-0541164)Korea (South). Ministry of Education, Science and Technology (#R33-10095

    A design flow based on modular refinement

    No full text
    We propose a practical methodology based on modular refinement to design complex systems. The methodology relies on modules with latency-insensitive interfaces so that the refinements can change the timing contract of a module without affecting the overall functional correctness of the system. Such refinements can exacerbate the unit testing problem for modules whose specifications admit a set of output behaviors for the same input (non-determinism), or modules whose input behavior may be affected by past outputs (feedback). We avoid the difficult problem of generating appropriate unit tests for such modules by using system-level tests as unit tests to verify the correctness of refined modules. We illustrate our methodology by showing how one might develop a microprocessor with an in-order pipeline. We then develop a superscalar pipeline using the in-order pipeline as the starting point. Our methodology leverages the effort of design exploration to reduce the effort of specifying interface contracts and unit testing.National Science Foundation (U.S.) (grant CCF- 0541164 on Complex Digital Systems

    Implementing a fast cartesian-polar matrix interpolator

    No full text
    The 2009 MEMOCODE Hardware/Software Co-Design Contest assignment was the implementation of a cartesian-to-polar matrix interpolator. We discuss our hardware and software design submissions
    corecore